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SUMMARY

A second-order, slender-wing theory has been developed for
incompressible flow over low-aspect-ratio wings with and without leading-
edge separation, The theory is second order in terms of the ratio of span
to chord which is proportional to aspect ratio, The theory has been devel-
oped using the technique of matched asymptotic expansions, The Brown
and Michael flow model was used for the case with leading-edge separation,
The theory proves to be somewhat limited in that it can only be reasonably
applied to wings which satisfy the Kutta condition at the trailing edge in
the first approximation, The present results obtained for an aspect-ratio-
one gothic wing represent a significant improvement for the separated flow
case over the first-order result but the predicted lift is still somewhat
higher than the experimental data.
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LIST OF SYMBOLS

@ ratio of half span to half root chord, 4/
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Gz function of #Z defined by Equation (56)

Gs function of X defined by Equation (58)

h(x) normalized half span of wing as a function of %
A designates imaginary part of complex quantity
Plx) spanwise integrated loading as a function of X
Plz,z)- local wing loading

R.P. designates real part of complex quantity

S(z) half span of the wing as a function of %
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wing reference area for force and moment coefficients = Zac“S

time
free-stream velocity
outer variables, physical variables normalized by ¢

chordwise location of pitching-moment reference center
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vortex strength
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complex outer variable (= 3+¢y)
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velocity potential for j# outer solution
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INTRODUCTION

The nonlinear aerodynamic characteristics of low-aspect-ratio
wings with angle of attack has been the subject of extensive theoretical
and experimental investigations over the past several years. The prime
motivation of these investigations has been the application to the low-speed
aerodynamic problems of high-speed aircraft and lifting reentry vehicles,

The first analytical attacks on the problem were made by Legendre
(Reference 1), Brown and Michael (Reference 2), Mangler and Smith (Refer -
ence 3), and Smith (Reference 4), Numerous experimental investigations
have been conducted with some of the more fundamental low-speed studies
being made by Peckham (Reference 5), Bergesen and Porter (Reference 6),
Lemaire (Reference 7), and Wentz and McMahon (Reference 8), Thus far,
the theoretical analysis of the problem gives results which grossly over-
estimate the lift, A semiempirical method which gives an accurate esti-
mate of the total lift has been developed by Polhamus in Reference 9,
However, means to accurately estimate loading distributions are still
needed,

It has been established that the nonlinear behavior with angle of
attack can be attributed to the spiral sheets of vorticity that emanate from
the leading edges and form over the upper surface. The general features
of such flows are indicated in Figure 1. The previously mentioned analytical
attacks on the problem have been made via slender-wing theory employing
the concept of two-dimensional analysis in the cross-flow plane., (The cross
flow is the flow in planes transverse to the body axis.) References 1 through
4 differ in the manner in which the spiral vortex sheet is approximated in
the cross-flow plane, For a wing without spanwise camber, the cross-flow
model consists of a flate plate which represents the trace of the mean camber
surface of the wing plus some representation of the two spiral sheets that
emanate from the plate edges (i. e., the wing leading edge). The flow in
the cross-flow plane is determined using complex variable theory employing
the complex velocity potential W defined such that w=¢g+.¢ where ¢ is the
velocity potential and y is the stream function, ¢ and ¢ are solutions to
Laplace's equation and are determined using the constraints that:

1. There is no flow through the plate (wing).

2. The spiral vortex sheet is a stream surface and
cannot sustain a force,

3. The pressure at the edges of the plate (wing leading
edge) is finite, This is referred to as the leading-
edge Kutta condition,

Legendre (Reference 1) represented the spiral sheets simply by two con-
centrated vortices above the upper surface of the wing. Brown and Michael
(Reference 2) represented the sheets by two concentrated vortices plus



branch cuts in the complex potential that connect each vortex to its corre-
sponding plate edge. Mangler and Smith (Reference 3) and Smith (Refer-
ence 4) represented each sheet by segmented arcs terminated by a branch
cut and a concentrated vortex,

The agreement between these theories and experiment is shown
in Figure 2, It can be seen that, while these theories qualitatively give
the right variation with angle of attack, they grossly overestimate the lift,

Several reasons for this discrepancy have been suggested. Primary
among these have been the following:

1. For a flat delta wing, the solutions obtained are
conical and violate the Kutta condition at the trailing
edge.

2, The approximations to the spiral vortex sheet have
not been sufficiently accurate,.

3. The flow visualizations of References 7 and 8 indicate
there may be secondary separation on the upper surface
of the wing and the significant associated vortices are
not accounted for in the theories.

To examine the significance of the first of the above suggestions,
it would be necessary to develop a method to calculate the truly three-
dimensional flow field over low-aspect-ratio wings, A rigorous treatment
of the low-aspect-ratio-wing problem would require a lifting-surface theory
in which the wing can be represented by a sheet of distributed bound vorticity,
The Kutta condition is applied at all swept edges of the planform and at the
trailing edge., Trailing vorticity is allowed to form at all swept edges and
the trailing edge. The trailing vorticity formed at swept leading edges
streams back over the upper surface of the wing., Such a flow model is
shown in Figure 1. This represents a wing with a nonplanar wake, The
tangency condition must be applied on the wing surface., Furthermore,
the trailing vorticity must lie on stream surfaces; that is, there is no
flow through the trailing sheets and no pressure discontinuity across
them, Conservation of vorticity can be applied at all edges where trailing
vorticity forms to relate the trailing and bound vorticity, In this fashion,
then, the tangency conditions and the Biot-Savart laws result in an integral
equation which, in principle, determines the strength of the bound vorticity
similar to ordinary lifting-surface problems, The problem is greatly com-
plicated, however, since the location of the trailing vorticity over the wing
is unknown a priori. In principle, an iterative technique could be applied
to arrive at a solution, However, the complexity of the problem has, thus
far, made this type of approach to the problem intractable,



Therefore, it appears that a promising approach to examining
three-dimensional effects would be to devise a method to modify or
correct the slender-wing or cross-flow analysis. Such a method has
been developed using the technique of matched asymptotic expansions,

While the objective was to treat the problem of separated flow
over low-aspect-ratio wings, the techniques were developed first for
application to the unseparated flow case. This approach provided the
foundations upon which the analysis of the separated flow problem was
based., The development for the unseparated flow case is presented for
the sake of clarity and completeness of this report, although it duplicates,
to some extent, the analyses of Wang in Reference 10*, However, Wang
did not consider the separated flow problem,

The results for the unseparated flow case are compared with
available first-order theories and experimental data, The comparison
reveals certain significant limitations of the analysis, particularly with
regard to application to delta wings, which apply to the separated flow
problem as well,

The development of the techniques of matched asymptotic expan-
sions for consideration of the separated flow case is presented, Brown
and Michael's cross-flow representation of the separated flow (Reference 2)
was used as the first-order model in the inner solution. This flow model
was selected because it is compatible with the matched asymptotic expansion
approach and, although relatively simple, yields numerical results that are
not significantly different from the more complex representations of Mangler
and Smith (References 3 and 4). Although the cross-flow model of Mangler
and Smith appears to correspond more closely to experimentally observed
flows, it proves to be impractical for use in the present scheme.

A promising new cross -flow model was also considered which was
based on a configuration studied by Drasky (Reference 11). This model
offered the possibility of replacing the branch cut in Brown and Michael's
model with a more realistic spiral vortex sheet without having to resort
to a numerical solution like Mangler and Smith. These features make it
particularly appealing for use in the matched asymptotic expansions analysis.
Unfortunately, it was found that the model, in its present form, cannot satisfy
all of the essential physical constraints of the problem, It was not pursued
further although it is believed that minor modifications to the present model
could eliminate its limitations. This investigation is reported in Appendix A,

“This reference came to the authors' attention during the preparation of
this report and the analyses presented were developed independently,
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MATCHED ASYMPTOTIC EXPANSION APPROACH

The theory of matched asymptotic exapnsions was originally
developed for viscous flow problems., The fundamental details and
original development of the technique may be found in Reference 12.

An additional reference where applications to some nonviscous flow
problems are considered is Reference 13. A concise statement of the
techniques is given in Reference 14, Briefly, the fundamental ideas
involved may be described as follows, It is assumed that the velocity
potential can be expanded in.a series in some small parametere (in the
present application, this parameter is the ratio of wing span to wing chord)
and, furthermore, that this solution can be divided into two parts: one
part, valid for small € far from the wing, called the outer solution and
the other part, valid for small € near the wing, called the inner solution.
In general, the inner and outer solutions cannot be completely determined
from the boundary conditions which apply to each solution., This incom-
pleteness is resolved by requiring certain compatability between the
solutions referred to as matching conditions. Following the notation of
Reference 13, we denote the outer solution by ¢’ and the inner solution
by #’. #°is determined as

B°= $°(%,y, 5;6) ~ @ Ale) B+ Fale)p) +  Kle)pr

u

where

"

¢4'a ¢[o(z’q15)). 4.:0, 7. -« m - .

The first m terms of this expansion will be called the m-term
outer expansion, Here, #4,2 are referred to as outer variables and
are chosen such that the leading term is not a function of €., The 4,

are referred to as gage functions and have the property that

. £
ey —— = O.

”
f"a 'ﬁ”,.[

Similarly, #* is determined as
é“'= f"(x,):'z,-‘e) = fa"f- 7 (é)gT,"+ 72 ff)f;',«- s p(e) Bt

and the first m terms of this expansion are referred to as the m-term inner
expansion, X, ¥,# are the inner variables chosen such that the leading term
is not a function of € and again

Lin Bp

€ =0 12“,
The inner and outer variables are related by a function of €&, We call
the expansion obtained by substituting inner variables in the m-term
outer expansion, expanding for small ¢ and retaining the first » terms
as the p -term inner expansion of the » ~-term outer solution, We abbre-
viate this as '""pinner ( » outer)'. Similarly, we can form the m-term



outer expansion of the n -term inner solution by substituting outer variables
in the » -term inner solution and expanding to m#terms. This is abbreviated
as ""mouter (#» inner)'". The matching that we require between inner and
outer solutions can then be stated as:

m outer (» inner) = 7 inner (m outer),
This is the asymptotic matching principle as presented in Reference 13,

Van Dyke (Reference 15) has used this technique to develop a
lifting -line-type theory for high-aspect-ratio wings. In the application
of this technique to low-aspect-ratio wings, the cross-flow solution can
be regarded as the first inner solution,

The slender-wing problem involves several small parameters
in which an expansion could be considered such as thickness ratio, aspect
ratio and angle of attack. The primary interest of this investigation is
in the lifting problem for thin slender wings, Therefore, the interaction
between thickness and angle-of-attack effects is neglected and the flow
about an infinitely thin wing is considered. The matched asymptotic
expansion approach is used to develop a theory which is of higher order
in aspect ratio. The variation with angle of attack is determined by the
cross-~flow model which is used as the first inner solution, For example,
in the unseparated flow problem, the cross-flow model consists of simply
the flow normal to a flat plate with no free vorticity on the lee side. Hence,
this inner solution results in a theory which is linear in angle of attack.



THE UNSEPARATED FLOW CASE

Coordinate System and Geometry

The flow about the wing is illustrated in the following sketch.

Ao d

The dimensional variables are z,, %,, %3

The nondimensional variables are z= %,/¢
Y= Z/C
3 =23/¢

where ¢ is one-half the centerline chord, The equation of the wing leading
edge is given by

3.6 < akblx)
where
a = b/c
and 4 is the half span of the wing. We require that 4 be a monatonically
increasing function of x and a<<7,
We define a velocity potential 94 such that
¢ 1 . ,.9¢ 1. . 241

azc_’ égoc‘ 2236‘

where g w are the velocities in the z, 4, 3 directions, respectively. The
governing differential equation for ¢ is Laplace's equation; i. e.,

Pow * Pyy*Pgz =0 (1)

With boundary conditions appropriate for small angle of attack:
Tangency ¢y=0 for y=0, -7=x=7, |§,|<a-b (2a)

Upstream g~tyc(z+ay) for x — -oo
and 2,4 —= @ (2Db)

Kutta condition #,, #,.#,bounded at trailing edge
of wing., (This condition will be discussed further,) (2¢)



Quter Limit Process

We can, as in conventional lifting-surface theory, represent
the wing by a distribution of bound vorticity and the wake by trailing
vorticity, The strength of the trailing vorticity is determined by the
Helmholtz laws and the bound vorticity is determined by the tangency
condition, Such a solution is

¢=cly(zray)+ *+ p ~—1|%3.4%,  (3)
L TAEA

where P(x,.3,) is the local pressure loading which is related to the bound
vorticity distribution by

Pl 7(%0:30) = Pl%,. 35)

where »(%,,3,) is the local bound vorticity distribution, The outer solution
is then the limit of this solution as « becomes small with z, Y53 fixed, Now,
for small a, Equations (3) becomes

° ¢ ! ﬁ(Za) (’z—’?‘/o)
¢——¢ =CUm(z+ay)+ g/ Z 2 1+ z 2 Z 1}dZa (4-')
4mply L1 3 +y [-2,)%+4"+5° ]2

c ‘pah Py z) [, (2-2,)

Y
4o, %r Yah /;‘}a)zqnyz

— A
where P(zﬂ:/a P("-’o,}a) 43, and is yet undetermined,
~ah

Equation (4) represents the potential for a distribution of singu-
larities along the #-axis from 1 to -1 of strength P(z,) and it is tentatively
assumed that

e —
Plz,) =Z/ P (%,)(a%)” .
” =
Then, Equation (4) becomes

c 5 E(a ”{ (2-2,)
"= Uoo( + )+———-g/£1£_______._ 1+ 2 _dea (5)
ool (g 7T

which is of the form ¢°=A§ #°a® . P(z,) will be determined by matching

- . . o - .
this outer solution with an inner solution,

Inner Limit Process

To obtain the inner solution, we transform the problem using
inner variables defined as

X=x;Y=¢la; Z-3/a

(i. e., we stretch the dimensions perpendicular to the line singularity or
x axis), This transformation renders all relevant geometric quantities
and derivatives with respect to X ¥ .Z of order one in the vicinity of the
Xaxis. Since @Xis a relevant transverse dimension as well as a4 (X),



this then implies a restriction on @« such that a/z is of order one, In terms
of the boundary conditions, this is the same as saying that the disturbances
transverse to the flow are all of the same order of magnitude,

We now seek a solution f"(X)Y, Z)valid in the vicinity of the X axis.
Substitution of inner variables in Equation (1) leads to

A By + Sy + iy = 0 (6)

with boundary conditions

By =0 for Y:0; -1sXs?; [Zl=h(X) (72)
F~cu, (X+aaY), X —=-w (7b)
fé, f;‘z, 452 bounded at trailing edge, (7¢)

Equation (7c) will be discussed latter,
It is tentatively assumed that #‘ can be expanded as
F=2 & a’
jz=0 Y
The first gage function is determined by the upstream condition [ Equa-

tion (7b)]. Substitution of this simple power series for ¢ in Equation (6)
and the collection of terms of like powers of a yields

Gy * Poge = O (8)

By Hy < 0 )
and for s> 2

QSJ;Y 4 é’;ﬁ T ?;'fzxx (10)

;
Solution for _é,

45;. satisfies Equation (8) and g{‘.~c)((4 for X =00 . We conclude
that

&= cux (11)

Solution for @1"

fl‘. satisfies Equation (9) and éf*vcacYUw for X = o , Also,
gs,‘Y=a -1=X=s1/, [2] s h(X).
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We recognize these as the conditions for a flat plate of width h
normal to a stream of velocity ¢/ ¢ which has the solution

¢/&l+ L.%,g = -/c Umai 40_2_/72. (12)

where 07-Z+Y, § and ¢ are velocity potential and stream function, respectively.,
We are now in a position to determine A (X by matching.

Matching

We now determine 7 (X) by use of the ""asymptotic matching
principle' which has been stated in shorthand form as

m outer (ninner) = pinner (mouter),.

We can accomplish this for n=m =2 ., We start with the inner solution;
the two-term inner solution is

F =gl vad = chX+alf ctyaian’. (13a)

In view of the previous comments that (¢/a)must be of order unity, Equa-
tion (13a) could have been equivalently expressed as

gt = cUpX +a’T.P cU, (asz) - (13b)

This is the form of the well-established slender-body results of Refer-
ences 17, 18 and 19 which suggest that the first gage function should be
a*rather than a as in Equation (13a). It is also the form which we find

is required in the investigation of the Drasky-type cross-flow model of
separated flow discussed in Appendix A, However, in the present develop-
ment, we shall continue to use Equation (13a).

Substitution of outer variables (i. e., f=3+éy=aa") in Equation (13a)

5= cUpr + LAY ac & -a%". (14)

Expanded for small a,

yields

A a,z/;z__z a’

h‘

F~ cUx + 1P Uy cc (£ -
Now, retaining the first two terms in @, we have

. az V4
Fe~cly (x+ay) +

cumw<7z—f?). (16)



Back in terms of inner variables

2

@";~CUW(X+ ezY )+ aéh e, a(Y—};}‘z—) (17)

which is, in our abbreviated notation, '2 outer (2 inner)',

W e now look at the outer solution, The two-term outer expansion
! 25 .
0 c a Fl(z,) i (% -%,) f
e (z+ray)+ 7+ 7rdx, .
& f(Z+ay) P ‘/‘f g2+ 32 [(%-%0)24'{/2*32]' ”

Expressed in terms of inner variables, this becomes

is

#°= clfy(X + aaY) +

acY [P (X,) { . (X -X,)

tmptJ, 2rYE [(X-X,) +a2(Y?+ 2%)]% %dx ] (18)

2cY 3 ['AMX) [(X-xJ (x -X,)
= CU‘”(X"‘ﬂ“Y) +4‘77/'DU°° axz/; Y.z+zz B + [(X -X)

SYEn) s (XK

2 Sink a./Y'2+Zz d.Xo
Here we have integrated twice with respect toJ( under the integral sign and
differentiated twice with respect to X outside the integral in order to avoid

divergent terms in subsequent expansions. Expanded for small a, Equa-
tion (18) becomes

+a’(y? +2’z)]

acY 3% 1T A(X,) (XX

p°~ el (X+aaY)+4 To Uy PX2 L, Y+Z® 2

) [1+59n (X -XJ)]dX,

aC’Y a / lEf(Xa)
-

z!X-X,
* 4mot, aX" z 57”()(%‘){ R }dX (19)

where, at this time, we need only retain the first two terms so that

acY ;I Oco

) + -
“$molyJ., Yirg = [/ sgn(X-X,)]dX,- (20)

2 inner (2 outer) = c(,(X+aaY)+

Matching the second terms of Equations (20) and (17), we obtain

7
S BN 1 son (XK1 X, = ho2mp i
-~/

or

X 2 2
2[ B (X, AX, = 2mpUlah®. 1)

10



Differentiating, obtain
P (X) = 2mols ahh’. (22)

This result is equivalent to Jones' slender-wing result (Refer-
ence 16) and, for a delta wing, is readily integrated to yield

R
C, = T P
To improve this result, we must obtain the third terms in the
inner and outer solutions. Inspection of Equation (19) indicates that the
next term in the inner solution should consist of an af term plus an
a’tna term. Matching of the two outer (three inner) to the three inner
(two outer) shows the nonexistence of any a? term. Then,

F<~ 55;. radl +2°8, + tnad,, (23)

, Inspection of Equation (15) shows that the next term in the outer
expansion must be an @f term but is not of the same type of singularity
as & [see Equation (5)]. However, we observe that

Z
;? =E/‘¢§E(-§) which suggests that
& 7 /’K(z,,) p (z-%,) , 24
=c — —_— + ,
*" o7, 3%+g® | [(x-2)+4%+3° ]2 #o

where - - 2 o
& 4, 0
¢~&, +rag, +ta'd,

and to determine K(%,) we must match two inner (three outer) to three outer
(two inner)., Equation (15) is essentially the second expansion, We therefore
proceed to calculate the first expansion,

We performed the differentiation with respect to % indicated in
Equation (24). Then we integrated and differentiated twice with respect
to 2 as in Equation (18) in order to avoid subsequent singular terms.
Equation (24) then becomes

o & 2% pf (6;2-292)[(744(,)‘ (%-%,) 2, 2, 27}
a¢4=ayca?//K(zo){(gz+yz) > *— [(z*za) +y *3_]

2

2

2
Yy+z (25)

11



Substitution of inner variables, expansion for small a, and performance
of the differentiation yields

(6z%-2y 2)

7
.0
a'd, aYcL/: K(X,) v (/*s9n(X-X,))dX,

g, dE (25-77)
dayc dX (22+Y2)Z (26)

where the second term is not presently needed but will be required for
later matchings. We now can construct

Up Y

/
2 inner (3 outer) :CU“’(X*"'“YHM_Z‘}—’TJ-?\/, hh'(X,)( 1+s9n(X-X,) dX,

(62%-2Y )

+acl z
(z*+Y7)? .1

’
KOG 1#s97 (X -X,)) d X,

(27)

where the first two terms have been matched previously [by matching
Equations (17) and (20)]. Reexpressing Equation (15) in inner variables,

. I
3 outer (2 inner) = c¢, (X *aaY) + Clw (YZ+ PL )
Y ah® 6g°-2v*
+
7 (ZZ+YZ)3) (28)

Matching the last term in Equation (27) with the last term in Equation (28),
we conclude that

’ Uah®
/ KOG) (1+597(X-X,)a X, = 7
-7
or
Z, s
00 - —UZ—j’;-f’—” (29)

12



We now have the three-term outer expansion as

o _ 2 clyox ! h/z'(z,){ (X-%,)
g = CU“(z-/'QIg)'i'a D) y._/; ?4.—5—5— 7+[(Z-xo)z+g2+}z]% dﬂ-’,

" 95, g | e RS (30)

The three-term inner expansion of this result is

3 inner (3 outer) = cU,(X+aaxY)+ ac{%a/,z(x)?%}—z

Uah®X)  (62%-2Y3)]) 5 (Uja, s nu (22-Y2) U aY/(hH)
+ 16 - (Zz_‘_yz)s}*a'c{"—“a (hh)Y(Zz+Y¢)2+—-—-——2 (2

n’ VY‘!"'ZZ __/_ 22 ! ’ 3 //%ay
-(hh).bn > +zé,}(z_/;hhsyn(x-xo) ﬂle-XoIdXo)}-a./wa.{(bh) > } (31)

We now seek 5?5;, and 45;2 such that the 3 outer (3 inner) is equal to Equation (31).

From Equation (10), we see that é;, satisfies

‘ : a°
Bt gy = ~Fixyx = 557 LRl iR (32)
Then, é_:, must be composed of a complementary and particular solution; i, e, ,
&, = -65‘; (P)+ é.;l(c)
The particular solution is most easily found by using the complex

potgntial W;(,P) where Wa(fp) =&, (P)+ i¥,(P). This plus the substitution o = z#iy
g - Z-cY transforms Equation (32) to

P}

%W 3°
4 23 - P {L-wa_¢¢2_hz} (33)

Fo-do

“which is readily integrated to

U.a' 2 4 , -
Wi - o _‘;" {a‘h (=2-h%) "2 -(hh')cosh /770:} (34)

13



and leads to

; = z -4 ,
&,,(P)=-1.P ";U“C[a—/;’ (o2-h%) * -(hh)cosh™' %’—} .
We now choose ﬁ;,(c) such that
a, it satisfies 25;,22 (c) + é”n‘ (c) =0

b. the outer limit of QS;, combines with g3: to produce
the a® term of Equation (31), and

c. there is no resultant flow through the surface,

Such a solution is found by inspection to be:

. , 2 1
¢;1(C) = IP.C[HG';Eh_a-z(O'Z*bz)-z _(hhl)’o_ U:x -7

o
ash = ——
N 5

2 2 T Lh’
> -U‘Z‘—a-;/a-z—hz{(hh')l(hbf+ -24)-/7’ +2/2Y2[ —/-;f’—sgn(x-xo)%u]x~x,|dxﬂ(35)

¢;2 is found more easily. It satisfies the homogeneous equation

Z £
¢""’YY' * gr_azzz =
and the tangency condition, It is found by inspection to be
! —z (hh)’
A 2
$;, = LU o= h* 5= (36)

We now can construct the three-term inner expansion

‘ i s S ze g Py
g - s ag’ +a®Pl + b adl,

or
55‘:= ({”cx-f'd,f,/? Yo ke o - ht
tat &% L, {(M')'(J—-o—) cosh T+ K ol F) 47
v, e
+2;/a‘3—/726,0({}~a3,ém@£k{c ;w(hh)-/a-{ba} 37)
where
a:oa=(/;/7')’4ui+—’)_;,""+ -‘9—2/'5”'55:/7 (XX) Lo [X-X| X - (38)
! h 2 X, 2 ol T

We now have obtained the three-term inner and outer expansions,
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Results

It can be shown that the terms in #° that involve (o--&)do not
contribute to the lift, Therefore, we may use Blasius' theorem to
determine the lift as

6. = Z2 (20r %601 ~ha 4 (h+ (1)) (392)

where

3=[,b (z)dx .

The pitching-moment coefficient is readily obtained as

7
c 7T ¢ 2
sz—g(f"zmc)q-ﬁzg ;,_'L—/i‘ {Zah

2
~a? [G’(z)hZ-M¢ (hh’)'ﬁZ_J}dZ (39b)

where %, . is the chordwise location of the moment reference center and
¢ is the reference chord,

The integral expression appearing in &,(x) can be evaluated using
the following formula derived from Reference 17:

’
;% f F(z,)sgn (%-2,) dnlz-n, | 2, = Flx)bn( 1-2°)

/! Flz) - Fl%,)
‘l/, L2 1 H g, (40}

EEA

This expression then can be differentiated once more to obtain the desired
form; that is,

2. ?
Jja .[’ Flx,)59n (%-%,) |52, dz = ;?{F(z)&u(f—z’z)

-/' Flz) - Flx,) dx,}

Zr | % -%,] (41)

In general, for this integral to exist in the strict mathematical sense, the
following must be true:

F(1) = F(-1) =0 (422)

F) = o (42b)
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F is proportional to P (the chordwise loading). If the wing apex is pointed,

the condition that A(-7) =0 is satisfied. The condition that 2(7)=0is equivalent
to the Kutta condition at the trailing edge., Equation (42b) imposes the addi-
tional restriction that the derivative of the chordwise loading at the trailing
edge should also be zero, This leads to the following restrictions on planform:

b'(1)

i

g (Kutta condition) (43a)

1}

4(1) = 0 (43b)
These restrictions were also encountered by Adams and Sears (Reference 20)
in their not-so-slender wing theory.

If the concept of the 'finite part of a divergent integral' (Refer-
ences 21 and 22) is used, the integral appearing in G,(z) in Equation (38)
can be evaluated for all planforms. This concept has been used to evaluate
the lift curve slope as a function of ¥ for two planforms. For a gothic-type
wing with h=;§(j+2z-z"), we obtain

3 3 a’®
&, = 37/24 - 031847 + ;/&«va—) (44a)
3 / 2 3
= - = — -0280 0. 75 44b
G, 4{‘45* + (2/33a 0260 &%+ 01525 4n ) (44b)
where %2,. = -0.125 and % = 0. 667 to correspond with the experimental

data of Reference 5, For delta wings, h:E’ (7+x)and

3
C‘a: = —27—,-(24- 0.02786a°- g‘-,&ma,) (45)

These results are plotted in Figures 3, 4 and 5 where they are compared with
first-order theory and limited experimental data, The results for the gothic
wing appear quite reasonable, The results for a delta wing as represented
by Equation (45) offers no significant improvement over Jones' theory. The
gothic wing satisfies Equation (43a) but not Equation (43b). The delta wing
satisfies Equation (43b) but not Equation (43a)., This comparison suggests

that useful results may be obtained provided the planform satisfies Equa-
tion (43a).

The problem encountered at the trailing edge in this theory is
analogous to the one encountered by Van Dyke (Reference 15) at the wing
tips of a high-aspect-ratio wing. We can expect problems in developing
higher-order solutions when the first-order solution contains a jump
discontinuity in the pressure when passing from the wing to the wake,

Van Dyke (Reference 15) was able to circumvent this problem by devising
another expansion valid in the immediate vicinity of the wing tips and then
matching this solution with the solution valid over the remainder of the
wing, This technique does not appear to be promising for our present
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problem., Such a procedure, in this case, would transform the problem
of the actual flow over the trailing edge to the problem of determining
the flow over the trailing edge of a finite span wing with semi-infinite
chord for which no solution is known at this time,

It does appear, however, that the problem can be solved by adding
an additional distribution of singularities on the wing surface to the first-
order solutions., These singularities should be such that the total solution
meets the Kutta condition at the trailing edge. The first two terms in the
inner solution would then be represented by

‘= Ujcx+aRPic {— Uy a'z—h2+f,(z)/:/(0','z)}

where f;(c5x)is the additional distribution of singularities, £ (o;z) must

be chosen to have certain asymptotic properties such that matching with an
outer solution is possible.a"ﬁ;/ﬂ}r evaluated on the wing surface must contain
a J/YZ~A% term to satisfy the Kutta condition all along the trailing edge, and
F;(o;%) must preserve the tangency condition on the wing surface. Unfortu-
nately, these constraints plus the boundary conditions expressed by Equa-
tions (2a) through (2c) do not determine #(z)/7(c;%) uniquely, A solution
“locally valid in the vicinity of the trailing edge must be developed to resolve
this nonuniqueness.
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THE SEPARATED FLOW CASE

The development of the solution for the separated flow case follows
lines similar to the unseparated case. The boundary conditions for the
separated flow case are given by Equations (2a) through (2c) with the addi-
tional requirement of a Kutta condition at the leading edge as well as the
trailing edge, The differences in the solution are introduced by the addi-
tion to the cross-flow model of a representation of the spiral vortex sheets
that form on the lee side of the wing, The Brown and Michael cross-flow
model has been used for this analysis.

A line distribution of doublets again proves adequate for the first
outer solution (with the strength variation modified to account for the vortex
formation), However, the vortex formation has a pronounced effect on the
higher-order terms in the outer solution. As will be shown, the second
term in the outer solution is now of order «” instead of @* as in the unsepa-
rated flow case.

In the inner solution, the order of the first two solutions is unaf-
fected by the vortex formation although the solutions are considerably more
complicated.

Inner Solution

For the separated flow case, the cross-flow model of Brown
and Michael (Reference 2) was used in formulating the first inner solution,
In this model, the representation of the vorticity on the lee side of the
plate consists of two concentrated vortices connected to their respective
plate edges by branch cuts in the velocity potential, The details of this
flow model and the method used to determine the vortex strength and
location are discussed in Appendix B. For present purposes, we may
consider the vortex strength and position as known functions of X,

The appropriate two-term inner solution for the Brown and
Michael flow model is

& - Yo ccX — aRP ¢ {U,,,oac1/o~z~h2
Te , (1ThE ~Ah ) f

2w -VG_Z_hZ_I__'[a_:_Z_hz

+

(46)

The vortices on the lee side of the wing are located at o; and -5 . The
strength of each is [,
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The outer expansions of Equation (46) required for matching and
written in terms of inner variables are

2 outer (2 inner) = (/ @cX+ a i U, acY

Y
) (F;Ah Ly, M) 1727?} (472)

3 outer (2 inner) = (xcX +a {Uw cecY

2 ¥4
[edh 1 2 Y _eY, %, (z%v?) 47b
+ ( P +—é—/) anwC)Yz_’.zz P (Yz+22)2 ( )
where the following substitutions have been used
Jor%h = (A+iT)h
Outer Solution
The three-term outer solution is now
o ! P(x,) (%-%,)
= U/ -+ 2 y&' L {
¢ mC/X 659)4‘0.477/0(/‘” /, 5’2_/_;2 7+Ez_z")z+yz+3z]{_ Az,
s ¢ & " Alx,) (%-7%,) )
+ e e ———
44'7’7% g\ 1L, y®+3° /+f(z-xo)z+ y2+3%]% }dz, (48)

where P(#,) and A(z,)are to be determined by the matching conditions.
Here, the last term is deduced from the last term of Equation (47b). To
obtain the inner limit of this expression, we substitute the inner variables
and expand for small 2. Then, the following two expansions are obtained:

2 inner (2 outer) = U, cx +a,{a>aY(/@

Ye 9 ' P.) (2-z,)?

Yoz Px*J, 4mpl, 2

(1+s9n (-2, )4,«,,} (492)
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and

3 inner (3 outer) =

aZ
Ye / 4P(x,,) (%-%,)% (1+59m (- gz,

Lg,cznz.{(/ ccY+ Vi 2% 5%° Toly 2

(z Y?e 2% 1! Alx,) (2-2,)° f i /
—— - Plz,
(z 2 Y92 I d ; 4mpls 2 (1+sgn(x-2, ), [ +a> 47p Uy 3,?: ” %)

/ / —— %
Sgnlz-%,) [;:;1‘ ;{Jhu lz-2,] + 52~ }-j»/-;/Yz+ ZzJ dz, +

1 2% [/(z YRt o 7
Fr04, Iv* [‘”"”’59”(2’”’4(2 v T2 ’h Y52 [

14
s 1 J° / A(Z,) _
+a,jma/{4”/o(/m 54%° /|, 2 sgn(z-2,)dz,

2 ! B, .,
/ __2_26/ (Z).sgn(z-z,)dz, Z
trpl, dx° 4L, 2

(49Db)

Matching

Matching the two outer (two inner) to two inner (two outer) [that is,
Equations (47a) and (49a)] results in

Blz)= 2mpll, (-— Ah + = /72(/ a:) (50)

where the prime denotes differentiation with respect tox., Matching two
inner (three outer) to three outer (two inner), we obtain

Alx) = =270 U, /;r/:gz,)’ (51)
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After substitution of these results in Equation (49b), the three inner (three
outer) becomes

o FAhe 1 Y rey, z,c(z%v?)
¢~chx+a,{Umch+( — +2h2U G)Y‘,}TEE - 77,' : (2T V)?

7/ z_ 2 17
{Y ‘[Ahe "‘"//72//00“0) _(Z7-Y7) (craYiZ)

(z2+Y%) #
SAch | 1z Y T [Ach | 1, 2 "y
(2L Lo ) L AT+ (F2 s D ) Sz

cla [Ach 1,2 : -
( YZ) ,},,/_I/Y + 22 +42 / ( p— +2/7Umaso).sgnﬁz- ,),ﬂwlx zoldxa

cla

HZ/( YZ,).sgn(;r ) A | %- x,ux,}
1 /7 " 1 '

+a%w{—2~ -ﬂ(—,zY;Z,c) - g(r)\ch+§'h2(/"oxg) ’} (52)

We see from Equation (52) that the next inner solution must be

of the form

s z
2’8, +abra f,z

where

& = 5 (P)+ 8, (c)

where &, (P) is the particular solution of

MRS P (53)

This equation is solved similarly to Equation (32).
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The particular solution is determined to be

2
F(P) = RP —— {U e [—— hz-g- cosh —E—]

Zz , 2 Z 2 z z , 2 Z 2
+—Cé[_a",&n/(1/; A "F _h ) +o~,hz<°‘¢;hj4¢':’ {;h )
v Yot ht+ hZ Yolh® -J/o7%h

_G-AU2<0'0’*"7 7/0’ :[/fh /’) /_?Z'mz@w/_b_)

TR (o) |}

(54)

553,(5) and égz satisfy Laplace's equation and the boundary condition
of no flow through the plate., They are chosen such that the three outer
(three inner) expansion matches Equation (52) and the Kutta condition at
the leading edge is preserved.

This is found by inspection to be

Fara {/"C[ ,z,,,’/*_ Yo ZhE 0—07+;,2+/;‘—7?m)

4_ Iz thz_h/fzﬁ +O’07jn/2 /Gabz'/%z—ﬁz

+o-&Gtn 2 o—ai/h h::/f‘] )+a-(7/a- pir5 W) by 24/ hz)_]

f;,. (c) =

— 2
Y, ac [-0‘21/0'{/12 + Zb-a-cosé'f ;T—]g

+Fre (LX) g [T A= )G R+ /57|
(55)
/ 2 ’(/"cY;Z,),5

-2Y2,- 7 (2-7,) A | %o
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where 2 ,
I 242 012 z )
Gote) = (£+ A/Z) Taw ok +42Z2L an» h

A A7 AR
— Ll # + —
-"zl/‘,,a:c rjn' +4(h)

5gn(z_zo),&q/lx—2’°’dzo - E{'(—Z/'Lf&yh)ll

2 Z
+4—_—;— R'P'o"zz {277'(/ (4A +20;.40 2(07 +{or _4%) - 264 2(5 - -5 /7))} (56)

Then, Q;; is

. . 2 /-7 -E 2- 2_ 2
R
2 710-"62‘*}/0—:,2_/)2

2 7 2 7 WYL
i (o)t 2 [CELA VT Vi ”) 55 r) 2 TTETT 0”)

o h? = Vor -t \CRlE s

-(T-T)GE R - /ﬁ)/@z(aw ;/a'z-/;z)] +U, e [a-(c'r'-—a-) o™ z—g(&‘-—a')cosb"/ %_J}

+_/ep(”YZ') [(/o— R e LT ]

7 a "reY; 2 ) £
- 2YE -7 os ___7-—59” (2-2,) 4o | 2-2:|d 2, + G,(2) &, -
and
‘. Z ‘
sz = (FCY ) 63(24) é,
/ / "
6at3) - 3( + 2 r) (58)
Results

Again, as in the unseparated flow case, the terms in &, containing
(- o) do not contribute to the lift and Blasius' theorem may be used to cal-
culate lift, This results in the following expressions

c. = (L eit ) (140,00 -a*las (1) (592)
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and the corresponding loading is
- 2 ,
———P(+) = zra 2+ 3% %) (14 %) ~a’lpaGslz)
) 17 2
7P % €

P [_gizﬂzz }(az’ (2) -t G5 (z)) (59b)

The factor %’I@(l +2% Z"’)appearing in Equation (59a) is recognized as the
lift coefficient as evaluated from the Brown and Michael analysis with

= [/Ih/x)dz-

Again, Gz(%) contains an integral of the type given in Equation (41), Unfor-
tunately, the first-order loading for the separated flow case, Equation (50),
is of such a form that the requirements on 4 cannot be derived explicitly.
However, in view of the results obtained for the unseparated flow case, we
can expect reasonable results only for the gothic wing. Therefore, this
was the only planform for which numerical results were obtained., Since
the vortex strength and position are implicit functions of & as well as #,
Gz(7) and G3(7) are also implicit functions of @ and Equation (59) must be
evaluated numerlcally for ¢; . Results have been obtained for an aspect-
ratio-one gothic wing with 4= —-(3-;‘2,1:-,1{‘) and are presented in Figure 6.
Again, the "finite-part concept" was used to evaluate the integral in G,(7).
It is seen that the present results offer a significant improvement over the
first-order Brown and Michael theory but are still somewhat higher than
the experimental results,
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DISCUSSION OF RESULTS AND CONCLUSIONS

A second-order, slender-wing theory has been developed for
incompressible flow about slender wings with and without leading -edge
separation, The theory applies to wings that have sufficiently smooth
planform shapes. For planforms such as the gothic which satisfy the
smoothness requirements, the inclusion of second-order aspect-ratio
effects results in a significant improvement over first-order theory
in the prediction of lift, For a gothic wing of aspect ratio 1.0, the
second-order theory predicts values of lift that agree closely with
the experimental results up to an angle of attack of approximately
twelve degrees., This agreement was obtained even though the sepa-
rated flow effects were represented by the very simple cross-flow
model of Brown and Michael (Reference 2).

Furthermore, the improved lift prediction for the gothic wing
was obtained even though the separated flow model was not required to
satisfy the Kutta condition at the trailing edge. Only the first-order
unseparated flow model happens to meet this condition for the gothic
‘planform. Therefore, the improvement in the theory for the separated
flow case must be attributed to the inclusion of second-order aspect-ratio
effects.

The delta planform does not have the required smoothness at
the trailing edge and so not even the unseparated first-order model
satisfies the Kutta condition in this case. The second-order theory
fails to produce any improvement in the prediction of lift for unsepa-
rated flow over a delta wing, This failure is attributed to the nonuni-
formity of the first-order (i. e., the conventional slender-wing) theory
at the trailing edge., Before a higher-order theory which will be valid
for delta-wing planforms can be developed, the first-order flow model
must be modified to eliminate the nonuniformity at the trailing edge, at
least in the unseparated case,

In view of the failure of the second-order theory for delta wings
in unseparated flow, this development was not pursued further for appli-
cation to the separated flow case,

A new cross-flow model for the slender-wing problem was
investigated, The model consisted of a double logarithmic spiral with
a vortex and a sink located at its core. The model was patterned after
the single logarithmic spiral solution obtained by Drasky in Reference 11,
The double spiral solution proves to be inadequate for the slender-wing,
cross-flow problem because it cannot satisfy the appropriate boundary
conditions on the vortex sheet.
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APPENDIX A

Drasky Flow Model

An analytic solution for the cross flow is desired for use in
the matched asymptotic expansion analysis of the separated flow case,

It appeared that a fundamental solution developed by Drasky
(Reference 11) for a two-dimensional nonsteady logarithmic spiral
vortex sheet with a concentrated vortex and a sink located at its core
could serve as a basis for the desired soiution, Drasky's solution for
the complex velocity potential is of the form

We) = cee)(q-g)tilE L8200 bniln-F) (A-1)

2mr

where »# is the complex variable, Such solutions have also been studied
in a more general sense by Alexander (Reference 26).

If we let oo be the complex variable in the physical plane, then
the cross-flow problem for the separated-flow, slender-wing case is
most easily analyzed in the transformed 4 plane where //2- o-%-h% This
transformation transforms the plate into the vertical » axis and the
resulting flow is sketched below.

(PHYSICAL PLANE) (TRANSFORMED PLANE)
(&
Y Y
)
@ @ - ]
. = .
i ' “PLATE
Uma “L.h
b oo
o~ PLANE 77 PLANE

The advantage of this transformation is that a solution symmetric
about the £ axis automatically satisfies the condition of no flow through the
plate,
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A study of References lland 26 indicates that the desired
solution in the » plane should be of form

Wip) = F(n) +5lp) (A-2a)

where

L,;/2 = —’--,,' 3

Frn)= Cz(;?—g”)"‘ "C (;7+¢)Z ’/: , (A -2D)
- - /" 1 =

i = S8 antng) - S22 g-3) + ¢ (a-2¢)

Here, Ff(y) represents the complex potential of the spiral sheets and F'z(ty)
represents the complex potential of the concentrated singularities located
at the spiral cores atFand-¢ . /7, 84,7, C,, (, are functions of X to be
determined., The conditions available to determine these functions are:

1. There is no flow through the plate or vortex sheet.
The sheet and plate are stream surfaces.

2., There is no pressure jump across the vortex sheet.

3, The loading at the edge of the plate is zero (Kutta
condition).

We then assume that the inner solution expands as

F-~ 8' +a’s; (A-3)

where &, is of the form of Equation (A-2), In order to generate the
correct first-order conditions on the vortex sheet, it is found that the
first gage function must be a®, Since the analysis is performed in the
transformed 5 plane, the requirement of no flow through the plate need
not be considered further.

If the vortex sheet is given by (Y 2, X)= 0, the exact stream
surface requirement on the sheet can be specified by

Ve -vd = O ; (on sheet) (A-4)

where v is the vector differential operator

2,:8 ,872.

Vazé;h/;; 2—5—
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Substituting Equation (A-3) into Equation (A-4) and retaining
only the leading terms in ¢, Equation (A-4) reduces to

Up Ix * é,‘lrd’y + 2y 55,; =0 ; (on sheet). (A-5)

The pressure may be calculated from the Bernoulli's equation as

er
- - - . f&-é
5 Ve -veé ( )

The approximated form of the pressure jump condition on the sheet
is then

) ZU sZF sf,‘: *+ é,‘:J = 0; (on sheet) (A-7)

Here, A means jump across the sheet. Equations (A-7) and (A-5) are
the conditions derived by Smith (Reference 4),

The leading -edge Kutta condition is most easily applied by
requiring that the origin of the transformed plane be a stagnation point
or

dW
—* = 0. A-8
dn ly=o 48

Matching requirernents would determine (, as

= -il, (—)

Drasky locates the sheet d by making the zero streamline of £, a branch
cut, If we let

o-2 =r, e
TrZ = 1y e“:
we find that 4 is given by
J:EM%+9,+92-7=0. (A-9)
If we let 7 = rse‘®® , the Kutta condition [ Equation (A-8)] results in
the following two relations:
Gy = 60° (A-10)
and
r=4{3a. (A-11)
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This last condition unfortunately also makes the zero streamlines of
F, and Fz coincide so that

@,if ,Jr + 15,; gy = 0; (on sheet) (A-12)

which has been verified through substitution. Insertion of Equation (A-12)
in Equation (A-5) gives

e = O (A-13)

This indicates that the sheet shape is not a function of X which
is a physically unacceptable result.

We may rearrange Equations {A-5) and (A-7) into the following

forms:

¢ ‘
ffv—df * f’zd* =~ Uy ; (on sheet) (A-14)
x

;2 ;2
A[él;r * ff; ]

Ad,.
The functional requirement on & and & can be imposed that they must
combine so that the left-hand side of both Equations {A-14) and (A -15)
are either nonzero constants or are, at most, functions of X only
(that is, no Z or ¥ dependency). Examination of Equations (A-2) and
(A-9) show that they do not meet this functional requirement for Equa-~
tion (A-15), Therefore, we conclude that a @, of the form of Equa-
tion (A-2) and o as given by Equation (A-9) do not comprise a satis-
factory solution for the posed cross-flow problem.

-2,

co >

(on sheet), (A-15)

Two modifications to this solution were also considered, First,
the sink was removed from Equation (A-2) (i.e., @=0). It was found that
such a solution cannot satisfy the leading-edge Kutta condition., Second,
the sheet shape was modified by making the spiral lead angle a function
of (X). However, no shape has been found that satisfies the functional
requirements of Equations (A-14) and (A-15).

The basic failings of this flow model apparently result from
application of the leading-edge Kutta condition [ Equation (A-8)] which
was not a constraint considered by Drasky (Reference 11), The Drasky
model was not pursued further. However, we believe that it merits
further consideration and should not be dismissed as having no potential
applicability, The features of this model appear to be so similar to the
essential characteristics of the physical situation that, we believe, only
minor modifications could produce a highly satisfactory mathematical
model,
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APPENDIX B

Brown and Michael Flow Model

The Brown and Michael flow model and the method used to
calculate the first-order solutions for the gothic and cambered wings
are outlined here for convenience and completeness. In the Brown
and Michael flow model, each spiral vortex sheet is represented by
a concentrated vortex and a branch cut which connects the vortex and
the leading edge. The resulting cross-flow model is indicated in the
following sketch,

VORTEX
BRANCH CUT * BRANCH CUT
\A// \\/
/ Y
N
? ? PLATE
U, @

The complex potential for such a cross flow is

R R Cal e L, ARt A A

S L F

where /7 is the strength of the vortices located at o; and-&; and all three
quantities are to be determined.

In this flow model, the local pressure jump and stream surface
conditions cannot be applied on the sheet, They are replaced by an overall
force balance on the branch cut and concentrated vortex., The force balance
plus the leading -edge Kutta condition then provide sufficient conditions to
determine /" and oy .

In this flow model, the branch cut can be considered as a vortex
sheet composed of vorticity aligned perpendicular to the free stream with
the strength of the sheet being only a function of x. The Helmholtz laws
then give the strength of this sheet as%, The Kutta-Joukowski theorem
can be used to calculate the force on the sheet and vortex,

The force on the sheet £ per unit depth is

r
Fs = Z,oUm%;(O'?—/?).
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The force on the vortex £, per unit depth is
74
Fy = - 5/0/— / PV’

AW,
where —>= o; 1s the complex velocity evaluated at g7 excluding the
contribution from the vortex located at o;. The force balance con-
dition then gives

0 221)

o7 mci

U (o -h) = r( )
P )=~ o *dz (B-1)
The leading-edge Kutta conditicn is
/ /
2 Uma’ = /-’ { 2_ ® (B-Z)
e (T )

For conical flow where the unknowns can be considered as linearly
proportional to z, Equations (B-1) and (B-2) represent a system of nonlinear
algebraic equations which can be solved numerically for the constants of
proportionality. This was done in the original paper by Brown and Michael
(Reference 2).

For nonconical flow, Equations (B-1) and (B-2) represent a system
of coupled ordinary differential equations and can be used as a continuation
scheme to numerically calculate the flow field once sufficient initial con-
ditions are given at an % station. This has been done by Smith in Refer-
ence 23 for curved leading edges and by Jobe in Reference 24 for curved
leading edges and camber,

If we let G- =n+4f and S=ach , then Equations (B-1) and (B-2)
can be manipulated into the forms

dyg _ C*(1+B7) - B*D*(y-1)
dx 1+A%n-1)+ B*E

(B-3)

af  DF[1+A*(n-1)]1-C"A*E
Zr 1+ A*(n-1)+B"¢

(B-4)

where 4* - GA2-2%) + 207 H
AN+ %) 7+ )

gr . 2ZEA-H (A .z%)
AN T (p2e £2)
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*

D* =

___9(__(_25_)_______ Z?\H _ ﬁ_ N ;S_I—( a,
235(6"“72)[/12%2 2x T zareze)pererr) (20 s )

& (z) [27\&__9_ ) M S e
2A5(£% n?) La%z? 22 2(2% 7°) (A% + BY)® €5 =&

9

{(Az-z2+1)‘+4/\22‘=}3 sin 8,

2 2 2 A
i(}\ ~TH1)T o+ 4-}22’2}4 cos B,
(n?+£%) (AA+28)
(p?+£%)(Ba-A¢z)
(AG + HT)(AP-B%) + 248 (AH - z&)
(AH-26) (A% B%) - 248(26 +Z4)
{(}72-52—/)24- 47252}2 cos &,

[(n>-£%-0)%+ 29722 }% sin 6,

—/z‘ s 2AT
27 Aoy
/ -1_2£y
—Z—f z 2
Pt
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The initial or starting conditions #z, and s, are obtained by
assuming that the flow is conical in the immediate vicinity of the apex.
An approximate expression for the conical solution is given in Refer-
ence 24 as:

2
2 = -~0.03038 (%i) + 0.28057 (g‘—”) - 0.00957
Vo = ~1.78322 57 + 2.29481F,° - 0.98¢07F, + 0.99031.

Equations (B-3) and (B-4) have been integrated down the chord
by use of a fourth-order Runge-Kutta method which is given in Refer-
ence 25, Once & and i and, hence, 2 and 7 are known as functions of
position, the vortex strength is determined from the Kutta condition as

2 2
7 o= ree A_t_z’_, S
; A
and the integrated lift to any chord station can be obtained from Blasius'
theorem as

2[ 1 2
L(x) = prasS [2+()\ +z"):‘.

The above procedure has been programed for a digital computer.

35



SPIRAL SHEETS
PLATE
X

Ueo Sinct

CROSS FLOW

)
o
«y
=

—~—

FLOW MODEL WITH SIDE EDGE SEPARATION

Figure 1

36



§m e g T S T e g R = o e e e ,-- - -r ———y [ P ————
] ' Q ¢ [ [l i ! 1
1 ¥ Il t ] ) ] ' 4 !
i ' [ A [l + i I ¥ ! 4
“ 4 " “ " “ n | “ ; !
1 ' ' ' ' } 1 ] 4 M t
“ “ " i O “ “ | “ “
gmommonoos RECTELEEE 4mmm e T et T it L e R - 4 B 4 4 __\ b RO

! )
: . “ ! " . > " “ “ ! !
[ H ' t r 1 ' [l 1 1 ! I
1 i ' i 1 I 1 1 I 1 1 ]
1 1 ' 1 + 1 ' [ [l ' ' 1
1 ] [l Il b [ 1 I I ' ! !
H : : i ; 1 : ‘ 1 } | =2 i
[ y SR bommmmaean Py S, PO Yy p PRI, NI S N b + 4 g LES
' 1 ' ' 4 i 1 i 1 (ETY R
: “ " P _ “ “ “ | | =
! ! ! H — — H ' . : 1 ! IFM

' N ™ ' ! ! ! ! e

)
: . “ : : _ ! [gle “ ]
“ " “ b _ | | | i/
|||||||||| ey Y R S, PO PR S, 4 EE. . "SR I S
| ' “- _1 wl ' w "- o b H T H d
“ " “ o= o E L T | " “ _ | _
] i 1 , ~ 1 ~ [l s ! 1 ] : 1 ]
] ! t ] ) ] ] b ] O ) i ]
" “ " P o=l m n _ " ! ” ! “

wi

+ +
e oo e S SO el SN - A i ) } | : i ;
' 1 R i _- i = ¥ S Y ( r ( r rossresses
[ i H ' F=3 ' ¢ I 3 ) 1 v
: : : = e = i : ; Y |
: “ : XL e L “ ! _ N © B
" : " e | - ! ! ! “ "

(e
L SR feeee e S S SO~ I8 SO N e _ -3
i ] ' 1 = i — [} 1 [ ' 1 [
[ ' ' 1 = 1 e [ ] ] ] + 1
] ' ] 0 ) 1] ' 1 ¥ i 1)
' ¢ 1 1 _= ) 1 f t 1 1 | +
" “ 0 P g L E " “ _ _ ! _ “ "
_ " e = “ “ ! ! . |
) ’ ) ]
L
pommnonaas = [ Fommenaes b e doemee- s i i T
= ) 1 + ] t

; ' u ' ; ' g ' : ' ! ;
1 1 o ' ' ¥ ' I t I t Q.
; ; Lt H : : : i : ' ] i :
' ' [ ' ' ' ' ] 1 1 1 ) '
_ ; = ; : ; _ ; “ ; | NN “
Jromommmm - e -e-- drmmmm o frommm e Fommmmes ro---- e r ; ;
) 1 1 ) ) 1] ] 1 ) 1 1 )
“ ; _ : “ | “ | " “ _ “
' ) e : ) ' i ' H 1 1 h '
. . 58 i : " _ " " “ “ _ “
1 ' ©w o H H ' H ¢ 1 i I ) 1
. ¥ N 3 ; : “ “ “ “ ; _
ﬂ |||||| "\llll o e .ﬂ lllllllll e I“ lllllllll lnlii ..w - __w “. IIDb“' lllllll hrmrcrooma
; ' H I 1 H H H i ) 1 ' 1
" “ " “ “ “ " " " " “ ,
: ; X « “ “ m “ “ " m ! _ ! A
1 ’ 1 ) ' )
e e O ..... bemen eeemen e oo I i J J J 3 J
) ' + ' 4 i i ] [] I i [) 1
' ' 1 ' ' 1 1 | | ' | 1 | i
i 4 ' ' ' 1 1 ' ) | | 1 ' 1
) 1 i ’ ' ) 1 ] ! 3 ) ) i 1
) 4 ) ) 1 1 ¥ 1 1] 1 i 4 i [}
* ] ‘ ) ) 1 ' i 1 ' ] 1 ' '
) ] ] ) ’ 1 ] 1] t i ] 1 ) ]
. ' ' ) ) 1 1 ' ' 1 ] ‘ ' 1
I 4 A Il [ [} [ ] t [} i ' i H
=+ o o ] <] =+ o~

Nw\._o “1N319144300 1417 Q3Z1TVHION

0.u 0.6 0.8

NORMALIZED ANGLE OF ATTACK, /¢

0.2

Figure 2 LIFT OF DELTA WINGS AT LOW SPEEDS

37



24

LIFT CURVE SLOPE, C

2.8

2.4

2.0

1.6

1.2

0.8

0.4

38

/
o L
/g,/
g4
Y
/ e 15t ORDER
# -~ === 2nd ORDER, EQ. (HUa) ----
/ O  EXPERIMENTAL, REF. §
0 0.2 0.4 0.6 0.8 1.0
a
Figure 3 LIFT FOR GOTHIC WINGS h =.:r (3 + 2x - x2)



0.8

0.6

0.4

0.2

llllllllllllllllll —,vw - - . B D — . -
H H ' 1 [ 1 ) (0 ‘'l - r
" f. 1 1 ) ) 1] ' 1 ¥
i H 1 1 i 1 ' 1 +
H i ! * ' ' [ 1
[ ' . [ 1 ' 0
+ [ ' 1 1 ‘ 1 ] [l
] ] / ] H ' ] ] ] 1 —_—
: [ | H ! ¢ ¢ ' ¢ 0 °
| |
L : H s : - : eee ST
H H H + ] ' t ' ¥ — ud
’ 1 [ 1 1 [] * 1 1 o
! H ] H ' ' H ' ' ' °
N ’ t ' '
' H i 1 1 ' i ' | o o
“ ; " “ PO ; “ _ w g
1 [ H
' 1 / ' : ! ' 1 ' 1 _Aln
[l i [ ' [ ¢ ] -
VIR TP - ’ r ¢ PO SRR * [ S - ® 2
11 ' & ' 1 H H ' 1 o “ =
] 4 i 1 1 1 Il [ ¢ wl [}
' H ] 1 . ' ‘ Qe 0o X
' ' R [ i 1 ' ¢ e o
' [ ] ¢ [ ‘ 1 ' ' ~
" . " _ “ : i _ . ] i s S &
i ¢ \ 1 '
H ' ' 1 [) ] s ] 13
eeeeemnn- reeeeeee e § I oo N oo eeeceeead ; ; L.t 2%
' ¥ ' ! (0 - - “. uuuuu pomo——— s ' e s
1 ‘ [} '
' ' ' I ' 7 ! I ' ! — N uw
1 ' v [ [ " [ ..v
¥ H H H 1] [ ] 1 ' 1 @
' ' ¢ 1 ' [ $ [ [ [
* ' “ + ] “ [ ' “ _
] [] + [} . '
I} ] [ : ] 1 : ' ' [ o
Smmrrcceme oo e -da o Vn dacoa J. <
' 1 H N ' 0 T : ? ‘ i i
H H H H M H ] 3 ¢ ' H
‘ . ] . ’ H ' % 1 H
+ . + f ] H H . 1 H
i ' + ' 1 1 + ey ‘ |
1 1 ¥ [ L [} + N [l )
: 1 ‘ [ [ i x b I [ t
n . 1 [ " “ ] o § : ] 1
[ [ [ I 1 I 1
| Ap——— - ¢ ¢ ry berwsovsmntorncmereadlpocesoen I PP -nd 4
. ' ) 1 + [ ' ' 1 ..@' [ 1
H H H ' + s i ' ' 1] [}
M + 1 ] ] 1 [ [] . ’ :
1 [ [ [ ) 1 ' ] ] ] '
) 1 ) ' 1 [ [l [ Y
[ ] ] ' e + [ ' v
' ' ] ’ + [ ] [ [
" . + 3 " n ' ' 3 R
) ) ' ' ' R
fomcmeconn I RN doicmmmman - . -t c.np cemep- <
I ' 1 ¥ 1 ’ ] ' '
I 1 [} 4 [} L] [] L] ] [
H H ' H [ ] ' ] 1
i H H H ‘ ' ' ] |
' ' ' [ ] [ ' ] [
[ ] [ + ' ’ ] ’ H
+ H H 1 [ ” ' + 1
L 1] 1 + 1] 1] 1] 4
P b 4 O YRR R - decocnnaaa > 4
1 + ] + -+ -+ 0 (s r : /
] ' 1 i 1 ' H ' '
i ' [ [ ' : ' + 1 1
H H ' H 1] ' [ + ' ‘
‘ 1 1 [ ] ' ' 1 ] 3
' ' ] ' 1 ' 1 i ] '
' ' 1 ' 1 ' 1 1 ‘ '
' ' ' [ I [} [ ' ' '
1 ' ' 1 s ' [} ] 3 1
porcmcncan P —— f Ty P YR P P —— domcmcanan drvocmcnna [P P Jmema 4.
| ' ' ' . [ " " 0 ¥
' ' ' 1 ' ] ' 1] + 1
] 1] 1 1 ‘ ' ¢ ] ' i
] ¢ 1 [ ' + : ¢ 1 1
' + [ [ ' + : ¢ 1 1
' ' ' 1 [ ] s ' 1 t
' i ] ‘ 1 ¢ 1 H 1 1
t + ' [ [l ' : + 0 4 !
. i oot [ [ 1 ‘ [ [ i H
fmemenenad feceeareaad e e - S - 1 ageaw Y
' ] 1 1 ' ] [ + ' +
' ' [l ] t [ ' ' ¢ 1
] ] ) [) [ ) ) 1 [ '
1 " 1 0 + ) ’ 1 [} '
) ' ) ' + ' [ ' ' i
[ [ ' + ’ 1] . + ) 1 ]
[} * 3 1] 13 1 ) 1 ) t [l
+ . ' 1 1 + [ [ ' ' 1
A & A 4 3 ] ] 1 ] ' L] L
o™ @ = o (-] o~ [ -]
® = L3 ® s . .
(-] o™~ o~ o~ — — o

q
9 ‘3407 IAMAD L4

Figure 4 LIFT FOR DELTA WINGS h = 2 (1 + x)

39



i Tt yoTTTTTeT | YT [ [ A ----M----‘ .........
' : — ! : :
' =) ' '
: : F © ' : ! !
R, P\ .
[ . e cenaa becenncnadeccncrancguacvcendpbrrcmrmencbocncccceecaadaaccgecmcnaana
' H o L b 1 ¥ 17
: ' o oz \
\ ' Ll H \ |
' i | H
' H o oz = ] _
H ! il o B !
m --------- 4--- w m m uuuuuu beecmanen Armemennan Ammmcmm——— S, W R SN A_uvun‘ uuuuuuuuuu
t M o O o —
] ' ul
+ T 0. i
w c > "
— N i H _ ]
jem—me———— Yem== cccaa Lpmmmmman Arceenmnn. P R Vi | IO u ooooooooo
1
! :
1 '
' H
1
......... |10 -
I H :
! :
I \
)
uuuuu . | S
H
1
1
1]
+
1
+
1
- | S
T
1
1
1}
! \
" \
/,
o - \}
o (o] o™~ o© =+ (=)
o~ —_— — o o
o « - L -
o o o (=4 o
1 1 i 1 1

0 ‘3d07TS SIAUND LNIWOW

1.0

0.8

0.6

o.u

0‘2

(3+2x~x2)

1
Tt

Figure 5 PITCHING MOMENTS FOR GOTHIC WING, h =

40



R i S S pe O s e ) It Bt St St S i
' i 1 i H O \ H H H " ! H 1 ] i Il
‘ ' ) s ' ) ‘ ' ' ' ; 1 H i 1 H
! ] ' i 1 1 1 1 ‘ ' i [ - [ < ' ' '
] 1 ¥
[l ] 3 ] t 1 [l W ' 1 b
" " " ah ," ;" ... ] [ ] ] ] r= ) = ] ] " =
T S fremoe B S e i P N #omomoes = T S R — =
| ! " ! : “ " “ " “ ol ! | . _
' [ ' ' ¢ 1 ' \ ) | =02 | ez H ' '
_ " " " “ “ " “ “ - B ; !
' H ' ‘ | ' [= H !
i i % T [ T A i U ..... ro--- .“.u-----g_.mmm = A i AT
' i ' ' \ H | " Cld i |
' ' H a ] 1 t 1
; _ : " " o N “ ! I Ba | A2 | ;
_ “ " : | ! : | o= | k! .
[ ORI SO PO N [, Joooao P — ¢ TR S PO, WO W B A - 1 S SO U | o~
r " i i : " n x. i “ TeE wio Y H . -
" . | : . _ _ ! _ _ “ - “ |
i 1 ' h 1 ' h ' | - . azul I 1
' H ' ! ' ! H ! ! ' s O ' 1 '
' ¢ ' H H | H t i i '
e S S N R AN Gunih Wb V% St T e e S
' ' ' i \ '
“ " _ _ _“ _“ R = B P& ; "
s ' .
| ; “ ! " " ;. O " . “ | |
Fommmoan R (N [ VY SNONSIUNRUOE S S P F B P, I P o N X S (I R . O (=]
. i 1 h t ! t ' ] t ' 1 —
N “ “ " 1 1 1 ¥ 1 [} ' 1 1 §
! , : . : | 0 | " " " | : "
: n n " " ; _ " ; | . . _ .
' t + ' v 0 1 t 1 “ “ “ k_
[kt HAai Sttt St [ Hs [ poTTeT TN T [ A HE [N
! “ “ " ! " ! " | L0 _ | | |
: i : : : ; : ] : ' H ' ;
! ! : ' . ' ' h ! ! p\ i ' ' 1
I ‘ ‘ ‘ ¢ ' '
fmeme e [T |, U BN et b e [ AU . I —— ) 4 4 4 o
. - - r .u
_ _ : _ “ " " : “ AN ) " “ :
: ! ! — ' ' ' ﬂ ! 1 1 1 i '
. t ' ' i | ' ) '
1 r 1]
! _ e - " “ P “ : 0 “ | “
i ' ' 1 1 [ | ‘ i ' ' '
- ..“ ||||||| .;"v|. L] =L R bmmm—m——— b D b - adataiabe * r | gntatadaiudutnd st
: w ' ! = ! H : ' '
“ | Pow & : " L | | | P
“ | o= za | _ “ “ _ : _ ! _
'
H ! ! Zw1 ' ! [ ' t H " ] :
i 1 1 1 vy .
e e e B s s A5~ A S At NG S ¥ W A ©
| ) ' << (=4 I 1 - = 1 1 1 ' ¢ i '
) + 1 - = - 1 i [ — Y] ' ' ' ' i '
“ “ T : P2 " “ : _ _ . .
! ¥ 2 M MA ! H ! o ' ' i } D_ 1
|||||||||||||||||||||||||||||||||||||| T e + —— + -
-~ S T A Sl A S S “
! ! B et " - " _ | " "
“ " " o udp— ¢ 1 1 M 1 1 “ n 1 b !
; H : >< oo ! H = : ; H H 1 =
uuuuuuu Jr S S - -
i i i LJ x2 H T = H 4 H H h
; ' S TY] ! : IR : ' ' i
) 1 ]
“ ; N o= ox : P “ n i “
] p— 3
e L L. @ O Ow ___i______ HEN S I N R ! i
; v P E S “ “ ' _ " _ :
H ' ! —_— - - § '
' d I T 7 Y= ; { / ) i ; H i
: H : ; i ) ; : i i :
R P R L S— LS LS. [ LS T R RO R N . W o~
“ “ oo X " : “ ; . . . !
) H ) 1 1
A Coh e e e |
! : ' i 1 ' ' ' i ' | 1 ' '
: : : : i 4 i J 3 H H H 3 3 i
[ proseess [ [ [ [ [ T [ [ [ T T 1 i
H 1 ! i [ 1 ' i 1 ) 1 ] | |
i [l ' [} t 1 i 1 i ] t ] ] 1 [}
' 1 ' i ‘ 1 1 ' 1 1 1 1 ' | ¢
! + ) 1] ) 1 1 1] ] ] ] ¥ t 1 )
“ H “ ' : “ [} ' 1 i ' 1 ¢ 1 i &
! ' ' 1 ' ' ' ‘ H s ' : | o
[ ™~ [I=3 Rw = Qw h/u - o
A e L] L]
o o o (=] o o o o
Ty ¢ i
0 "1N3ID144300 L4

AHGLE OF ATTACK, cx, deg

Figure 6 COMPARISON OF EXPERIMENTAL AMD THEORETICAL RESULTS
FOR AN ASPECT-RATIO0-1 GOTHIC WING

41



DISTRIBUTION LIST

NASA Langley Research Center
Langley Station
Hampton, Virginia 23365
Attention: Research Program Records Unit, Mail Stop 122
Raymond L, Zavasky, Mail Stop 117
Edward C. Polhamus, Mail Stop 404A
John E, Lamar, Mail Stop 404A
Percy J. Bobbitt, Mail Stop 245
Charles H, Fox, Jr., Mail Stop 404A
William B, Kemp, Jr., Mail Stop 404A

NASA Ames Research Center

Moffett Field, California 94035

Attention: Library, Stop 202-3
Mark W. Kelly, Stop 221-2
Siegfried N, Wagner, Stop 221-2

NASA Flight Research Center
P.O. Box 273

Edwards, Californja 93523
Attention; Library

Jet Propulsion Laboratory

4800 Oak Grove Drive

Pasadena, California 91103
Attention: Library, Mail 111-113

NASA Manned Spacecraft Center
2101 Webster Seabrook Road
Houston, Texas 77058
Attention: Library, Code BM6

NASA Marshall Space Flight Center
Huntsville, Alabama 35812
Attention: Library

NASA Wallops Station
Wallops Island, Virginia 23337
Attention: Library

NASA Electronics Research Center
575 Technology Square

Cambridge, Massachusetts 02139
Attention: Library

42

Copies

b = = (] =



DISTRIBUTION LIST (Cont'd)

NASA Lewis Research Center

21000 Brookpark Road

Cleveland, Ohio 44135

Attention: Library, Mail Stop 60-3

NASA Goddard Space Flight Center
Greenbelt, Maryland 20771
Attention: Library

NASA John F, Kennedy Space Center
Kennedy Space Center, Florida 32899
Attention: Library, Code IS-CAS-42B

National Aeronautics and Space Administration
Washington, D, C. 20546
Attention: Library, Code USS-10
John B. Parkinson, Code RAA
NASA Code RA

NASA Scientific and Technical Information Facility

P. O, Box 33
College Park, Maryland 20740

43

Copies

14 plus
reproducible








